

PROGRAMMER EXAM: 2013

PAPER -I

SURAKU ACADEMY

(A PREMIER INSTITUTE FOR COMPUTER SCIENCE)

VISIT: WWW.SURAKUACADEMY.COM

CALL: 9782120102

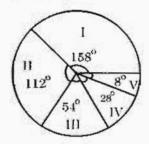
Suraku Academy | Jaipur | <u>www.surakuacademy.com</u> | 9782120102 (A Premier Institute for Computer Science)

1	How many numbers lie betw time?	een 300 and 50	00 in which 4 comes only one
	(1) 98	(2)	99
	(3) 100	(4)	101
	300 तथा 500 के बीच कितनी	ऐसी संख्याएँ होर्ग	ो जिसमें 4 केवल एक बार आयेगा?
	(1) 98	(2)	99
	(3) 100	(4)	101
2	Three views of a cube follow	ving a particula	r motion are given below :
	R Q	S T R	Q S U
	What is the letter opposite to	P ?	
	(1) S	(2)	T
	(3) R	(4)	U
	एक घन के तीन विभिन्न आकृतिय	ों को नीचे दिए ग	ाए विशेष प्रकार से दिया गया हैं 🚽
	R Q	S T R	Q S
	P अक्षर के विपरित अक्षर कौन र	सा है ?	
	(1) S	(2)	T
	(3) R	(4)	U
3	Given that :		
	(i) L is the brother of M	(ii)	N is the father of L
	(iii) O is the brother of P	(iv)	P is the daughter of M
	Then the uncle of O is -		
	(1) L	(2)	M
	(3) N	. (4)	P
	दिया है :		
	(i) L, M का भाई है	(ii)	N, L का पिता है
	(iii) O, P का भाई है	(iv)	P, M की पुत्री है
	तब O के चाचा है -		Å
	(1) L	(2)	M
	(3) N	(4)	P
01/	PROG-1_A	2	[Contd

4	from	Delhi		r at a speed of 40	-	d of 60 km/hr and comes back hr. What is the average speed
	(1)	46 km	/hr		(2)	48 km/hr
	(3)	50 km	/hr		(4)	52 km/hr
						ल से चलती है, तथा वही कार दिल्ली के दौरान कार की औसत चाल क्या
	(1)	46 कि	मी/घण्टा		(2)	48 किमी/घण्टा
	(3)	50 कि	मी/घण्टा		(4)	52 किमी/घण्टा
5	State	ment li	$P = x^{0/6}$	of y		
		(y = y%	of x.		
	Then	which	of the f	following is true ba	sed o	on statement?
	` '	$P \geq Q$			(2)	P < Q
	(3)	P = Q			(4)	None of these
	कथन	यदि P	= y का)	xº/o		•
		Q =	x का y%	ó		
	तो क	थन के	अनुसार नि	नेम्न में से कौन सास	त्य है	?
	(1)	$P \geq Q$)		(2)	P < Q
	(3)	P = Q)		(4)	इनमें से कोई नहीं
6	The	number	s follow	a specific pattern.	The	missing number is -
	84		81	88		
	14	12	18 9	? 11		
	(i)		(ii)	(iii)		
	(1)	8			(2)	12
	(3)	16			(4)	22
	निम्न	संख्याएँ	एक विशे	ष प्रकार से लिखी गई	है, उ	भज्ञात संख्या होगी –
	84		81	88		
	14	12	18 9	? 11		
	(i))	(ii)	(iii)		
	(1)	8			(2)	12
	(3)	16			(4)	22
01 / 1	PROC	G-1 A]		3		[Contd

- 7 The remainder obtained when a prime number greater than 6 is divisible by 6 is:
 - (I) 1 or 3

(2) 3 or 5


(3) 2 or 5

- (4) 1 or 5
- 6 से बडी अभाज्य संख्या को 6 से विभाजित करने पर शेषफल प्राप्त होगा -
- (1) 1 या 3

(2) 3 या 5

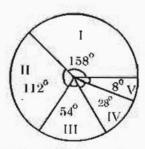
(3) 2 या 5

- (4) 1 या 5
- 8 The total population in a city is 40,000. The various sections of them are indicated below in the circle diagram:

- I Employed in public sector
- II Employed in private sector
- III Employed in corporate sector
- IV Self employed

V - Unemployed.

The number of persons employed in corporate sector is -


(1) 3,000

(2) 6,000

(3) 8,000

(4) 9,000

एक शहर की जनसंख्या 40,000 है। इनके विभिन्न समूहों को नीचे दिए गये वृत्त आरेख में दर्शाया गया है :

- सार्वजनिक क्षेत्र में रोजगाररत
- II निजी क्षेत्र में रोजगाररत
- Ⅲ निगमित क्षेत्र में रोजगाररत
- IV स्वरोजगारयुक्त

V - बेरोजगार

निगमित क्षेत्र में रोजगार प्राप्त व्यक्तियों की संख्या है -

(1) 3,000

(2) 6,000

(3) 8,000

(4) 9,000

01 / PROG-1_A]

4

	111 (2	ic following fidilloci scries	, one maniper i	s wrong. I ind the O	da nambei
	2, 6,	, 24, 96, 285, 568, 567			•
	(1)	24	(2)	96	
	(3)	285	(4)	567	
	निम्न	लिखित संख्या शृंखला में एक	संख्या गलत है,	विषम (गलत) संख्या है	_
	2, 6,	, 24, 96, 285, 568, 567			
	(1)	24	(2)	96	
	(3)	285	(4)	567	
10		en a question and two state ver as:	ements number	ed I and II are follo	wing. Give
	(1)	If the data in statement	I alone is suff	icient to answer the	question.
	(2)	If the data in statement	II alone is suf	ficient to answer the	e question.
	(3)	If the data even in both answer the question.	statement I a	and II together is su	ufficient to
	(4)	If the data neither states the question.	nent I nor state	ement II is sufficient	to 'answer
	Que	stion: What is the sur	n of 5 real mu	mbers ?	
	State	ements: (I) The produ	act of the num	bers is 630.	
		(II) The avera	ge of the num	bers is 30.	
	एक : उत्तर	प्रश्न तथा दो कथन (I व II) व दे:	देये गए है। कथन	ों में उपलब्ध आंकडों वे	अधार पर
	(1)	यदि प्रश्न का उत्तर देने के	लिए मात्र कथन	I के ही आंकडे पर्याप्त	है।
	(2)	यदि प्रश्न का उत्तर देने के	लिए मात्र कथन	II के ही आंकडे पर्याप्त	है।
	(3)	यदि प्रश्न का उत्तर देने के ि है।	लेए कथन I और	II दोनों के आंकडे मि	लकर पर्याप्त
	(4)	यदि ना तो कथन I और न है।	ही कथन II के	आंकडे प्रश्न के उत्तर दे	ने में पर्याप्त
	प्रश्न	ः 5 वास्तविक संख्याओं व	का योग क्या होग	π ?	
	कथन	ों : (I) संख्याओं का गुण	गनफल 630 है।		
		(II) संख्याओं का औ	सत 30 है।		
01 /	nn 🗸		£		Contd
UI/.	rkŲ(G-1_A]	5		[Contd

11	The Chief of Army staff of Inc	dia is -
	(1) Bikram Singh	(2) Bimal Kumar
	(3) V. K. Singh	(4) D. K. Joshi
	भारत के स्थल सेनाध्यक्ष हैं -	
	(1) बिक्रम सिंह	(2) बिमल कुमार
	(3) वी. के. सिंह	(4) डी. के. जोशी
12	The Agni-IV Missile was teste	ed on -
	(1) November, 2012	(2) September, 2012
	(3) December, 2010	(4) September, 2010
	अग्नि—IV मिसाइल का परीक्षण किय	ग गया -
	(1) नवम्बर, 2012	(2) सितम्बर, 2012
	(3) दिसंबर, 2010	(4) सितम्बर, 2010
13	Who first used the word Swar	aj?
	(1) Ram Mohan Roy	(2) Ram Krishna Paramhansa
	(3) Swami Dayanand	(4) S. N. Banerjee
	किसने सर्वप्रथम स्वराज शब्द का प्र	योग किया ?
	(1) राम मोहन राय	(2) राम कृष्ण परमहंस
	(3) स्वामी दयानंद	(4) एस. एन. बनर्जी
14	How many persons have been	honoured with Bharat Ratna till now?
	(1) 60	(2) 41
	(3) 61	(4) 43
	कितने लोगों को अभी तक भारत र	रल से सम्मानित किया गया है?
	(1) 60	(2) 41
	(3) 61	. (4) 43
01	PPOC-LAI	6 [Contd

Hawa Mahal at Jaipur was o	constructed by -		
(1) Man Singh	(2)	Ram Singh	
(3) Pratap Singh	(4)	Jai Singh	
जयपुर स्थित हवामहल का निर्माण	। कराया –		
(1) मानसिंह	(2)	रामसिंह	
(3) प्रतापसिंह	(4)	जयसिंह	
The total length of roads in	Rajasthan in Ma	arch, 2012 was -	*
(1) 189402 km.	(2)	199502 km.	
(3) 170402 km.	(4)	155372 km.	9
मार्च, 2012 तक राजस्थान में सड़	कों की कुल लंबाई	ई थी –	
(1) 189402 किमी.	(2)	199502 किमी.	
(3) 170402 किमी.	(4)	155372 किमी.	
When the 'MGNREGA' first	launched in Ra	jasthan ?	
(1) 2 nd Feb. 2006	. (2)	2 nd May, 2007	
(3) 1 st April, 2008	(4)	2 nd Feb. 2009	
राजस्थान में 'मनरेगा' सर्वप्रथम व	व प्रारंभ की गयी	?	
(1) 2 फरवरी, 2006	(2)	2 मई, 2007	
(3) 1 अप्रैल, 2008	(4)	2 फरवरी, 2009	
PROG-1_A]	7	٠	[Contd
	(1) Man Singh (3) Pratap Singh जयपुर स्थित हवामहल का निर्माण (1) मानसिंह (3) प्रतापसिंह The total length of roads in (1) 189402 km. (3) 170402 km. मार्च, 2012 तक राजस्थान में सड़ (1) 189402 किमी. (3) 170402 किमी. (3) 170402 किमी. (4) 2nd Feb. 2006 (5) 1st April, 2008 राजस्थान में 'मनरेगा' सर्वप्रथम व (1) 2 फरवरी, 2006 (3) 1 अप्रैल, 2008	(3) Pratap Singh (4) जयपुर स्थित हवामहल का निर्माण कराया – (1) मानसिंह (2) (3) प्रतापसिंह (4) The total length of roads in Rajasthan in Ma (1) 189402 km. (2) (3) 170402 km. (4) मार्च, 2012 तक राजस्थान में सड़कों की कुल लंबाई (1) 189402 किमी. (2) (3) 170402 किमी. (4) When the 'MGNREGA' first launched in Ra (1) 2nd Feb. 2006 (2) (3) 1st April, 2008 (4) राजस्थान में 'मनरेगा' सर्वप्रथम कब प्रारंभ की गयी (1) 2 फरवरी, 2006 (2) (3) 1 अप्रैल, 2008 (4)	(1) Man Singh (2) Ram Singh (3) Pratap Singh (4) Jai Singh जयपुर स्थित हवामहल का निर्माण कराया — (1) मानसिंह (2) रामसिंह (3) प्रतापसिंह (4) जयसिंह The total length of roads in Rajasthan in March, 2012 was— (1) 189402 km. (2) 199502 km. (3) 170402 km. (4) 155372 km. मार्च, 2012 तक राजस्थान में सड़कों की कुल लंबाई थी — (1) 189402 किमी. (2) 199502 किमी. (3) 170402 किमी. (4) 155372 किमी. When the 'MGNREGA' first launched in Rajasthan? (1) 2nd Feb. 2006 (2) 2nd May, 2007 (3) 1st April, 2008 (4) 2nd Feb. 2009 राजस्थान में 'मनरेगा' सर्वप्रथम कब प्रारंभ की गयी? (1) 2 फरवरी, 2006 (2) 2 मई, 2007 (3) 1 अप्रैल, 2008 (4) 2 फरवरी, 2009

18	The Mangarh Dham is situat	ed in the district -	
	(1) Dungarpur	(2) Udaipur	
	(3) Chittorgarh	(4) Banswara	
	मानगढ़ धाम जिस जिले में स्थित	ह	
	(1) डूंगरपुर	(2) उदयपुर	
	(3) चित्तौडगढ़	(4) बांसवाड़ा	
			•
19	The Tenth Pravasi Bhartiya	Divas Conclave was held a	.t -
	(1) Ajmer	(2) New Dell	hi
	(3) Mumbai	(4) Jaipur	
	दसवाँ प्रवासी भारतीय दिवस कॉन	लेव सम्पन्न हुआ –	
	(1) अजमेर	(2) नई दिल्ली	15
	(3) मुम्बई	(4) जयपुर	
20	The amount fixed for the Ch Rajasthan is -	ef Minister scholarship for	higher education in
	(1) ₹ 5,000	(2) ₹ 6,000	
	(3) ₹ 7,000	(4) ₹ 8,000	
	राजस्थान में उच्च शिक्षा हेतु मुख्य	मंत्री छात्रवृत्ति योजना में निर्धा	रेत राशि है -
	(1) ₹ 5,000	(2) ₹ 6,000	
	(3) ₹ 7,000	(4) ₹ 8,000	
01 /	PROG-1 A I	8	[Contd

21		ch one of the following problems oncurrent transaction scenario?	can oc	cur due to introducing locks in
	(1)	Information overwrite	(2)	Loss of information
	(3)	Deadlock	(4)	Lack of integrity
22		ch one of the following technique		
	(1)	First-come first-served	(2)	Greedy algorithms
	(3)	Strassens's algorithm	(4)	Two-phase locking
23	In to	ransaction, cascade rollback		
	(1)	Can occur in systems which us	e defen	ed writeback
	(2)	Can occur in systems which us	e imme	diate writeback
	(3)	Occurs in systems which use the management system	ne "wat	erfall" transaction
	(4)	Is a result of simultaneous tran	saction	commits.
24		en a relation country(<u>name</u> , contine valid SQL statement?	ent, pop	ulation) which of the following
	(1)	SELECT continent, population	FROM	country GROUP BY continent
	(2)	SELECT continent, SUM(population)	lation)	FROM country GROUP BY
	(3)	SELECT name, population FRO)M cou	ntry GROUP BY continent
	(4)	SELECT name, SUM(popula continent	tion) F	ROM country GROUP BY
1				

An athletics meeting involves several competitors who participate in a number of events. The database is intended to record who is to take part in which event and to record the outcome of each event. As results become available the winner attribute will be updated with the cid of the appropriate competitor.

Competitor(cid, name, nationality)

Event(eid, description, winner)

Competes(cid, eid)

Com	petitor	
cid	name	nationality
01	Pat	British
02	Hilary	British
03	Sven	Swedish
04	Pierre	French

Even	it	
eid	description	winner
01	running	
02	jumping	
03	throwing	

Com	petes
cid	eid
01	01
02	01
03	02
04	02
04	03

Select the true statement:

- (1) There is a British competitor in every event.
- (2) Pierre does not compete in any event
- (3) Sven has been entered in two events
- (4) Hilary has entered only the running event

01 / PROG-1_A]

10

An athletics meeting involves several competitors who participate in a number of events. The database is intended to record who is to take part in which event and to record the outcome of each event. As results become available the winner attribute will be updated with the cid of the appropriate competitor.

Competitor(cid, name, nationality)

Event(eid, description, winner)

Competes(cid, eid)

C	om	petitor	
C	id	name	nationality
()1	Pat	British
()2	Hilary	British
()3	Sven	Swedish
)4	Pierre	French

eid descrip	
01 nunning	
ן עו ניטן	3
02 jumpin	g
03 throwin	ng g

Com	petes
cid	eid
01	01
02	01
03	02
04	02
04	03

Identify the result of the following SQL statement:

SELECT eid FROM Competes, Competitor

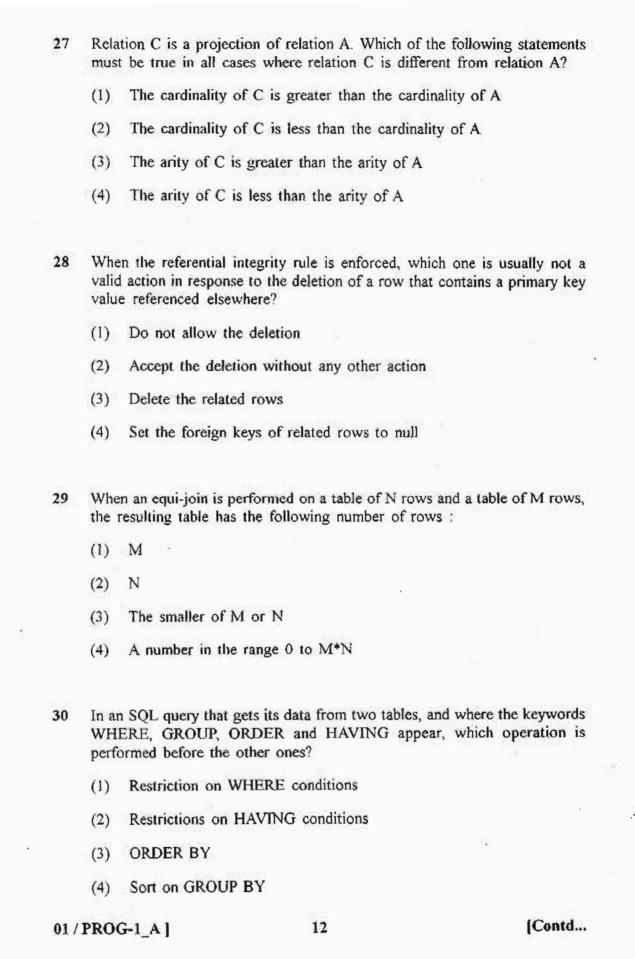
WHERE Competes.cid=Competitor.cid

AND nationality = 'Swedish'

(1) 01

(2) 02

(3) 03


(4) 04

01 / PROG-1_A]

11

[Contd...

Suraku Academy | Programmer | www.surakuacademy.com

- 31 A Trigger is
 - (1) A statement that enables to start any DBMS
 - (2) A statement that is executed by the user when debugging an application program
 - (3) A condition the system tests for the validity of the database user
 - (4) A statement that is executed automatically by the system as a side effect of modification to the database
- With regard to the expressive power of the formal relational Query Languages which of the following statements is TRUE?
 - (1) Relational algebra is more powerful than relational calculus.
 - (2) Relational algebra has the same power as relational calculus.
 - (3) Relational algebra has the same power as safe relational calculus.
 - (4) None of these
- 33 In SQL, relation can contain null values, and comparisons with null values are treated as unknown suppose all comparisons with a null value are treated as false.

Which of the following pairs is not equivalent?

- (1) x = 5 not (not (x = 5))
- (2) x = 5 x > 4 and x < 6, where x is an integer
- (3) $x \neq 5 \text{ not } (x = 5)$
- (4) none of these
- 34 The SQL expression

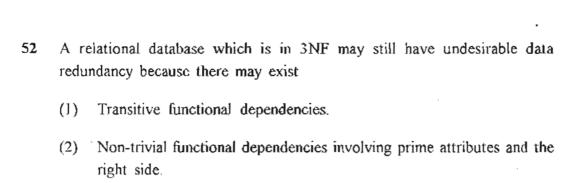
Select distinct T. branchname from branch T, branch S where T. assets > S. assets and S. branchcity = "XYZ"

Finds the names of

- (1) All branches that have greater assets than some branch located in XYZ
- (2) All branches that have greater assets than all branches located in XYZ
- (3) The branch that has the greatest asset in XYZ
- (4) Any branch that has greater asset than any branch located in XYZ

01 / PROG-1 A]

13


) be a r	elatio	n scheme with the following
C -	\rightarrow F, E \rightarrow A, EC \rightarrow D, A	→ B		
Whi	ch of the following is a ke	ey for R	?	- 16 - 10
(1)	CD		(2)	EC
(3)	AE		(4)	AC
$T \rightarrow$	U, U \rightarrow V and V \rightarrow S. L	et R = (F	RI and	
(1)	not in 2 NF		(2)	in 2 NF but not in 3 NF
(3)	in 3 NF but not in 2 NF		(4)	in both 2 NF and 3 NF
A fi	inctional dependency of th	e form x	: → y	is trivial if
(1)	$y \subseteq x$		(2)	$y \subset x$
(3)	$x \subseteq y$		(4)	$x \subset y$ and $y \subset x$
Give	n the functional depender	ncies.		
$x \rightarrow$	w , $x \rightarrow y$, $y \rightarrow z$ and z	\rightarrow pq		
Whi	ch of the following does r	not hold	good	?
(1)	$x \to z$		(2)	$w \rightarrow z$
(3)	$x \to wy$		(4)	None of these
(1)	m + n and 0		(2)	m n and 0
(3)	m + n and m-n		(4)	m n and m + n
PRO	G-1_A]	14		[Contd
	deper C → Whin (1) (3) Con T → that (1) (3) A for (1) (3) Give x → Whin (1) (3) Con and are (1) (3)	dependencies: C → F, E → A, EC → D, A Which of the following is a k (1) CD (3) AE Consider the schema R = (3) T → U, U → V and V → S. L that R1 ∩ R2 = Φ. The deco (1) not in 2 NF (3) in 3 NF but not in 2 NF A functional dependency of th (1) y ⊆ x (3) x ⊆ y Given the functional dependency x → w, x → y; y → z and z Which of the following does r (1) x → z (3) x → wy Consider Join of a relation and S has n tuples, then maximulare (1) m + n and 0	dependencies: $C \rightarrow F, E \rightarrow A, EC \rightarrow D, A \rightarrow B$ Which of the following is a key for R (1) CD (3) AE Consider the schema R = (S T U N T \rightarrow U, U \rightarrow V and V \rightarrow S. Let R = (F that R1 \cap R2 = \phi. The decomposition (1) not in 2 NF (3) in 3 NF but not in 2 NF A functional dependency of the form x (1) $y \subseteq x$ (3) $x \subseteq y$ Given the functional dependencies. $x \rightarrow w; x \rightarrow y; y \rightarrow z \text{ and } z \rightarrow pq$ Which of the following does not hold (1) $x \rightarrow z$ (3) $x \rightarrow wy$ Consider Join of a relation R with and S has n tuples, then maximum and mare (1) $m + n$ and 0 (3) $m + n$ and $ m-n $	C \rightarrow F, E \rightarrow A, EC \rightarrow D, A \rightarrow B Which of the following is a key for R? (1) CD (2) (3) AE (4) Consider the schema R = (S T U V) and T \rightarrow U, U \rightarrow V and V \rightarrow S. Let R = (R1 and that R1 \cap R2 = ϕ . The decomposition is (1) not in 2 NF (2) (3) in 3 NF but not in 2 NF (4) A functional dependency of the form x \rightarrow y (1) y \subseteq x (2) (3) x \subseteq y (4) Given the functional dependencies. x \rightarrow w, x \rightarrow y, y \rightarrow z and z \rightarrow pq Which of the following does not hold good: (1) x \rightarrow z (2) (3) x \rightarrow wy (4) Consider Join of a relation R with a related S has n tuples, then maximum and minimulare (1) m + n and 0 (2) (3) m + n and m-n (4)

Sur	akıı	Academy	Programa	ner	www.surakuacademy.com
01/	PRO	G-1_A]	15		[Contd
	(4)	None of these	• •		
	(3)			-	cteristics of each record
	(2)				gramming language
	(1)		ita using physica		
45	Whi	ch of the follow	ving is true of th	ne data m	nanipulation language (DML)?
	(4)		es reachable from	-	
	(3)				of less than three vertices
	(2)		es which have s		
	(1)	•	es adjacent to gi		ex
44	then	which of the		es canno	represented in a table Adj(x,y), t be expressed by a relational
	(3)	Hierarchical d	ata model	(4)	None of these
	(1)	Nested relatio	nal data model	(2)	Non-atomic data model
43	A re	elational model	which allows no	on-atomic	domains is
	(3)	Over-defined	constraint	(4)	Feasible constraint
	(1)	Integrity cons	traint	(2)	Referential constraint
42	The	employee's sala	ry should not be	e more t	han Rs. 6000. This is
	(4)	None of these	;		
	(3)	Network mod	el between the t	ables cor	nnect them
	(2)	Many-to-many	relationship bet	ween the	e tables that connect them
	(1)	Parent child re	elationship betwe	een the t	ables that connect them.
41	A p	rimary key, if co	ombined with a	foreign k	xey creates
	(3)	R_1-R_2		(4)	$R_1 \cap R_2$
	(1)	$R_1 \cup R_2$		(2)	$R_1 \times R_2$.

For two union compatible relations R_1 (A, B) and R_2 (C, D), what is the result of the operation R_1 A=C AB=D R_2 ?

40

46	Using relational algebra, the query that finds customers, who have a balance of over 3000 is						
	(1)	π _{customer_name} (σ _{balance>3000} (D	eposit))		
	(2) σ _{customer_name} (σ _{balance>3000} (Deposit))						
	(3)	π customer_name(σ					
	(4)	σ eustomer_name(π					
47	Emb	edded pointer pro	vides a/an				
	(1)	Secondary access	s path	(2)	Physical record key		
	(3)	Inverted index		(4)	All of these		
48		physical locations transforms file key			ned by a mathematical formula on in a/an		
	(1)	B-tree file		(2)	Indexed file		
	(3)	Hashed file	1 10	(4)	All these		
49	10 r		records), C (wi		records), D (with 5 records) and		
	(1)	165		(2)	90		
	(3)	75		(4)	65		
50	Whi	ch command allow	s us to add to	our da	atabase file ?		
	(1)	CLEAR		(2)	CREATE		
	(3)	APPEND		(4)	APPEND BLANK		
51		ch of the following	0A 550 Ft	manent	tly delete the record marked for		
	(1)	PACK		(2)	ZAP		
	(3)	SEEK		(4)	SKIP		
01 /	PRO	G-1_A	16		[Contd		

- Non-trivial functional dependencies involving prime attributes only on (3) the left side.
- Trivial functional dependencies involving number of attributes. (4)
- 53 Data security threats include
 - Privacy invasion (1)

- Hardware failure (2)
- (3) Fraudlent manipulation of data
- (4) All of these
- 54 Which of the following queries finds the clients of banker xyz and the city they live in?
 - (1) π elient.oustomer name.customer city(σ elient.customername=oustomer_name(\sigma_Banker_name="\text{Nyz}"(Client \times Customer)))
 - $\pi_{oustomer_name.customer_city}(\sigma_{Banker_name="xyz"}(Client \times Customer))$ (2)
 - (3) π client.customer_name.customer_city(σ Banker_name="xyz" (σ client.customername=eustomer.eustomer_name(Client × Customer)))
 - π_{Customer name, Customer city}(σ_{Banker name="xyz"}(Client × Customer)) (4)
- 55 If P and Q are predicates and P is the relational algebra expression, then which of the following equivalence are valid?
 - (1) $(\sigma_P(\sigma_Q(e)) = \sigma_Q(\sigma_P(e)))$ (2) $(\sigma_P(\sigma_Q(e)) = \sigma_{P \cup Q}(e))$
 - (3) $(\sigma_p(\sigma_p(e)) = \sigma_p(e))$
- (4) None of these

. 01 / PROG-1 A]

17

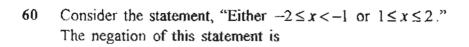
56 Find the correct match for terms in Column I to those in Column II: Column I Column II Roll back P Relationship a Atomicity b Q Checkpoint Entity R Attribute C d Domain S Transaction (1) a - S, b - P, c - R, d - Q (2)a - Q. b - S, c - P. d-R (3) a - S, b - Q. c - R, d - P (4) a - Q, b - P, c - R. d - S 57 Consider a weak entity set W and its identifying (owner) entity set O. Primary key of W is composed of (1) Discriminator of W and primary key of O (2) Superkey of W and primary key of O (3) Discriminator of W and foreign key of O(4) Superkey of W and foreign key of O Which of the following is an assertion in DBMS? (1) Domain Constraint (2) Generalization Trigger (4) View (3) Find the correct match for terms in Column I to those in Column II: 59 Column I Column II Audit Trail P Tuple a Row Q Privileges b C Revoke R Event-Condition-Action S d Security Trigger (1) a - S, b-P, c-R, d-Q a - P. b - S. c - Q. d-R (2)

18

d-P

d - R

[Contd...


a - S, b - Q, c - R,

b - P, c - Q,

(3)

01/PROG-1 A

(4) a - S,

(1)
$$x < -2$$
 or $2 \le x$ or $-1 < x < 1$

(2)
$$x < -2$$
 or $2 < x$ or $-1 \le x < 1$

(3)
$$x \le -2$$
 or $2 < x$ or $-1 \le x < 1$

- 61 Let A={0, 1}×{0, 1}×{0, 1} and B={a, b, c}×{a, b, c}×{a, b, c}. Suppose A is listed in lexicographic order based on 0 < 1 and B is listed in lexicographic order based on a < b < c. If A×B×A is listed in lexicographic order, then the next element after ((1, 0, 0), (c, c, c), (1, 1, 1)) is
 - (1) ((1, 0, 1), (a, a, b), (0, 0, 0))
 - (2) ((1, 0, 1), (b, a, a), (0, 0, 1))
 - (3) ((1, 0, 1), (a, a, a), (0, 0, 0))
 - (4) ((1, 0, 0), (a, a, b), (0, 0, 1))
- 62 Which normal form is considered adequate for database design?
 - (1) 2NF

(2) 3NF

(3) 4NF

- (4) 5NF
- Which of the following statements is FALSE?
 - (1) $\{2, 3, 4\} \in A \text{ and } \{2, 3\} \in B \text{ implies that } \{4\} \subseteq A B.$
 - (2) $\{2, 3, 4\} \subseteq A$ implies that $2 \in A$ and $\{3, 4\} \subseteq A$.
 - (3) $A \cap B \supseteq \{2, 3, 4\}$ implies that $\{2, 3, 4\} \subseteq A$ and $\{2, 3, 4\} \subseteq B$.
 - (4) $A B \supseteq \{3, 4\}$ and $\{1, 2\} \subseteq B$ implies that $\{1, 2, 3, 4\} \subseteq A \cup B$.

01 / PROG-1_A]

19

64 Find the correct match for terms in Column I to those in Column II:

Column I

Column II

topological sorting a

P grant

b privileges Q concurrency

multivalued dependency С

R 4NF

improved throughput ď

S serializable order

(1) a - P, b - Q, c - R, d - S

(2) a - Q, b - S, c - P, d - R

(3) a - S, b - Q, c - R, d - P

(4) a - S, b - P, c - R, d - Q

Two concurrent transactions T1 and T2 are in conflict when 65

- (1) T1 reads from x, T2 reads from y
- **(2)** T1 reads from x, T2 writes to x
- (3) T1 reads from x, T2 writes to y
- T1 writes to x, T2 writes to y(4)

Identify correct matching of the following sets: 66

> a Transaction

index

- b Natural join
- 2 relational algebra

B-tree С

- 3 two phase locking
- d Concurrency control
- 4 ACID
- (1) a-4, b-2, c-3, d-1
- (2) a-4, b-1, c-3, d-2
- (3) a-3, b-2, c-1, d-4
- (4) a-4, b-2, c-1, d-3

01 / PROG-1_A]

20

- In context of two phase locking protocol, which of the following statements is correct?
 - (1) Growing phase occurs after shrinking phase.
 - (2) In shrinking phase, transaction can obtain as well as release locks but in growing phase, it can only obtain locks.
 - (3) In growing phase, transaction can obtain as well as release locks but in shrinking phase, it can only release locks.
 - (4) In growing phase, transaction can only obtain locks and in shrinking phase, it can only release locks.
- Which one of the following is not related to Normal Forms (Normalization) rule with regards to the Relational Model?
 - (1) All fields within a table must relate to or directly describe the Primary Key.
 - (2) Repeating Groups must be eliminated from tables.
 - (3) Fields that can contain non-numeric data are to be removed and placed within their own tables with an associated Primary key.
 - (4) Redundant data is to be eliminated by placing the offending fields in another table.
- Which of the following SQL query shall output names of all customers ending with "Smith"?
 - (1) Select name from customer where name like '_Smith'
 - (2) Select name from customer where name like '%Smith'
 - (3) Select name from customer where name like 'Smith%'
 - (4) Select name from customer where name like '%Smith%'
- 70 Which of the following is correct?
 - (1) An SQL query automatically eliminates duplicates.
 - (2) An SQL query will not work if there are no indexes on the relations.
 - (3) SQL queries can be nested.
 - (4) SQL permits attribute names to be repeated in the same relation.

01 / PROG-1_A]

21

/1	1/2	17.225,125 IP address bei	ong to		
	(1)	Public IP address		(2)	Private IP address
	(3)	Both		(4)	None
72		ed Equivalent Privacy (Wi	EP) and	d Wi-Fi	Protected Access (WPA) are
	(1)	packet filtering services.			
	(2)	network address translati	ion pro	tocols.	
	(3)	security protocols.			
	(4)	service set identifiers.			
73	Mat	ch the following acronyms	s to the	eir defin	itions:
	1	HTTP	a	protects	IP addresses from hackers
	П	SMTP	b	a protoc	col associated with Web pages
	Ш	NAT	c	a proto	col used for e-mail
	ΓV	WAP	d	an acces	ss point on a wireless network
	(1)	I-b, II-a, III-d, IV-c			
	(2)	I-b, II-c, III-a, IV-d			
	(3)	l-c, II-a, III-d, IV-b			
	(4)	1-c, II-d, III-a, IV-b			
74		he p-persistent approach of	CSMA	protoc	ol, when a station finds an idle
	(1)	Waits 1 sec before send	ing	(2)	Sends with probability 1-p
	(3)	Sends with probability p)	(4)	Sends immediately
75	subi		Os for e	ach sub	u need to divide it into multiple net with the largest amount of I you assign ?
	(1)	255.255.224.0		(2)	255,255,240.0
	(3)	255.255.248.0		(4)	255.255.252.0
01	/PRO	G-1_A J	22		[Contd

	(1)	IP .	(2)	ARP '	
	(3)	RARP	(4)	ICMP	
77	of le		e layers. Ar	Applications generate messages in h-byte header is added. What with headers?	
	35	h		hn	
	(1)	h M	(2)	$\frac{hn}{M+nh}$	
	13/19	nh	1996	, nh	
	(3)	nh M	(4)	$1-\frac{nh}{M}$	
78		. ABC Corporation of XYZ ha 9 devices. Calculate the nun	The last the second	nnected mesh network consisting ts for each device.	
	(1)	4950	(2)	4851	
	(3)	100	(4)	98	
79	FDD	DI is a			
	(1)	Ring network	(2)	Star network	
	(3)	Mesh network	(4)	Bus based network	
80	In n	etworking terminology UTP	means		
	(1)	Unshielded Twisted pair	(2)	Unshielded Teflon port	8
	(3)	Uniformly terminating por	t (4)	Unshielded T-connector port	
01/	PRO	G-1_A]	23	[Contd	
	•				

76 What protocol is used to convert IP addresses to MAC addresses?

	8, 1	ocol used in a computer i		
	(1)	4	(2)	8
	(3)	15	(4)	16
00	YIN		:C . L	and man to bandware broadcast
82				and map to hardware broadcast s has hosted with all bits
	(1)	0	(2)	1
	(3)	Both (1) and (2)	(4)	None of these
33	ICM	P (internet control messa	ge protocol) is	
	(1)	A protocol that handles		
	(2)	A protocol used to mor	nitor computers	//
	(3)	Both (1) and (2)		
	(4)	None of these		
84	Erro	r detection at the data li	nk level is achi	eved by
	(1)	Bit stuffing	(2)	Cyclic redundancy codes
	(3)	Hamming codes	(4)	Equalization
	The	topology with highest re	eliability is	
85		By topology	(2)	Star topology
85	(1)	Dy topology	()	
85	(1)	Ring topology	(4)	Mesh topology
85 86	(3) Hov	Ring topology many characters per sec	(4)	Mesh topology rity) can be transmitted over a (1 start and 1 stop bit)?
	(3) Hov	Ring topology many characters per sec	(4)	rity) can be transmitted over a

· ·		thernet CSMS/CD, the special bit agement collision handing is called	-	ce transmitted by media access
	(1)	Preamble	(2)	Postamble
	(3)	Jam	(4)	None of these
88		erminal multiplexer has six 1200 bp nected to it. If outgoing line is 96		
	(1)	4	(2)	16
	(3)	8	(4)	28
89		ime division switches, if each me ne period is 125 ms, then maximum	_	
	(1)	625	(2)	1250
	(3)	2300	(4)	318
90		ata rate of ring is 20 Mbps, signal ber of bits that can be placed on	-	
	(1)	2,000 bits	(2)	20,000 bits
	(3)	1,000 bits	(4)	None of these
91	Deci	ryption and encryption of data are	е гезро	onsibilities of
	(1)	Physical layer	(2)	Data link layer
	(3)	Presentation layer	(4)	Session layer
92	Rou	ter function in which layers		
	(1)	Physical and data link layer		
	(1) (2)	Physical and data link layer Physical, data link layer and net	work	
		·	work	
	(2)	Physical, data link layer and net	work	

,,	The ackr	channel uses stop and wa	it protocol. gible. To get	The transmission time of the a channel efficiency of at least
	(1)	80 bytes	(2)	80 bits
	(3)	160 bytes	(4)	160 bits
94	In I	EEE 802.11, a BSS withou	t an AP is ca	lled
	(1)	an ad hoc architecture		
	(2)	an infrastructure network		
	(3)	either an ad hoc architecto	ure or an infi	astructure network
	(4)	None of the choices is co	rrect	
95	to a bety	nother through intermediate ween two LANs, pa	bridges. Since	packets are sent from one LAN e more than one path may exist y have to be routed tree algorithm used for bridge-
	(1)	For shortest path routing	between LAI	Vs.
	(2)	For avoiding loops in the	routing path	S
	(3)	For fault tolerance		
	(4)	For minimizing collisions		27
96		layer is responsi	ble for movir	ng frames from one hop (node)
	(1)	physical	(2)	data link
	(3)	transport	(4)	none of the above
97	A p	ort address in TCP/IP is	bits	long.
£()	(1)	32	(2)	48
	(3)	16	(4)	none of the above
01/	PRO	G-1_A]	26	[Contd

	(1)	Class-A	(2)	Class-B
	(3)	Class-C	(4)	Class-D
99	Whic	h of the following layer of OSI	model	also called end-to-end layer ?
	(1)	Presentation layer	(2)	Network layer
	(3)	Session layer	(4)	Transport layer
100		a sliding window of size (n-1)	•	• •
	maxii	mum of how many frames sent t	out yet	to be acknowledged
	(1)	0	(2)	n-1
	(3)	n	(4)	n + 1
101	Pick meth	the incorrect statement in error re	etransm	ission used in continuous ARQ
	(1)	Go back N method requires mo	re stor	age at the receiving side
	(2)	Selected repeat involves comple	x loggi	ing than Go back N
	(3)	Go back N has better line utilis	ation	
	(4)	Selective repeat has better line	utilisati	ion
102		P Network subnet has been assign is the maximum number of hos		
	(1)	14	(2)	30
	(3)	62	(4)	126
01/1	PROG	G-1_A] 27		[Contd

Which of the following IP address class is

98

103		organization having IP Network has subnets for 64 departments. The		
	(1)	255.255.0.0	(2)	255,255,64.0
	(3)	255.255.128.0	(4)	255.255.252.0
104	runs of 2	ocal area network operates Ethernotat a transmission rate of 8 Mbps and 5 μs. How long (μs) has a station anel again, after experiencing 5 successes	d a or to w	ne-way signal propagation time ait before trying to access the
	(3)		(-)	1000
105	Wha	at is the term for two modems esta or?	ıblishi	ng communications with each
	(1)	Handshaking	(2)	Syncing
	(3)	Pinging	(4)	Linking
106	ln c	omputer network terminology, RTS	is:	
	(1)	Ready to Sequence	(2)	Ready Task Set
	(3)	Request to Send	(4)	Ready Time Status
107	RS-	232 is a standard that is for :		
	(1)	RAM checksum	(2)	Serial ports
	(3)	BIOS error checking	(4)	Parallel ports
108	The	first section of a URL identifier is	the _	
	(1)	protocol	(2)	path
	(3)	host	(4)	port

109	In H	TTP, server is a co	omputer that	it keeps copies of responses to
	rece	nt requests.		
	(1)	a regular	(2)	a proxy
	(3)	an auxiliary	(4)	a remote
				50
10	Duri	ing an FTP session the data of	connection	may be opened
	(1)	only once	(2)	only two times
	(3)	as many times as needed	(4)	none of the choices is correct
11	In F	TP, there are three types of _	: s	stream, block, and compressed.
	(1)	file types	(2)	data types
	(3)	transmission modes	(4)	none of the choices is correct
1000	(3)	TELNET	(4)	SSH
113		ne stop-and-wait protocol, the		
		its in the sequence.	size is	where m is the number
	(1)	1;11	(2)	2 ^m ; - 1
	(3)	1; 2 ^m	(4)	2 ^m ; 2 ^m
114	In T	CCP, a SYN segment consume	es	sequence number(s).
	(1)	No	(2)	One
	(3)	Two	(4)	None of the choices is correct
01/	PRO	G-1_A]	29	[Contd

115	A serious problem can arise in the sliding window operation when either the sending application program creates data slowly or the receiving application program consumes data slowly, or both. This problem is called the							
	(1) silly window syndrome							
	(2) unexpected syndrome window							
	(3)	bug						
	(4)	None of the choices is correct						
116	In TCP's algorithm the size of the congestion window increases exponentially until it reaches a threshold.							
	(1)	congestion avoidance	(2)	congestion detection				
	(3)	slow start	(4)	None of the choices is correct				
117	The number of addresses assigned to an organization in classless addressing can be							
	(1)	any number	(2)	must be a multiple of 256				
	(3)	must be a power of 2	(4)	None of the choices is correct				
118	com	allows a site to use a set of private addresses for internal communication and a set of global Internet addresses for communication with the rest of the world.						
	(1)	DHCP	(2)	NAT				
	(3)	IMCP	(4)	None of the choices is correct				
119	Which of the following is true about ICMP messages?							
	(1) An ICMP error message may be generated for an ICMP error message.							
	(2) An ICMP error message may be generated for a fragmented datagram.							
	(3) An ICMP error message may be generated for a multicast datagram.							
	(4)	None of the choices is correct	N.					
120	The Open Shortest Path First (OSPF) profocol is an intradomain routing protocol based on routing.							
	(1)	distance vector	(2)	link state				
	(3)	path vector	(4)	None of the choices is correct				
01/	PRO	G-1 A] 30		[Contd				

Programmer Exam : 2013 : Paper-I : Key

PROGRAMMER EXAM: 2013: ANSWER KEY: PAPER -I

QUESTION	ANSWER	QUESTION	ANSWER	QUESTION	ANSWER
1.	2	41.	1	81.	4
2.	1	42.	1	82.	2
3.	1	43.	1	83.	1
4.	2	44.	4	84.	2
5.	3	45.	4	85.	4
6.	3	46.	1	86.	1
7.	4	47.	1	87.	3
8.	2	48.	3	88.	3
9.	1	49.	4	89.	DELETE
10.	2	50,	DELETE	90.	DELETE
11.	1	51.	1	91.)/	3
12.	DELETE	52.	2	92.	2
13.	3	53.	1	93.	9 4
14.	2	54.	DELETE	94.	1
15.	3	55.	DELETE	95.	2
16.	1	56.	2	96.	2
17.	1	57.	1 0	97.	3
18.	4	58.	1 1	98.	DELETE
19.	4	59.	4	99.	4
20.	1	60.	2	100.	2
21.	3	61.	3	101.	3
22.	4	62.	2	102.	3
23.	2	63.	DELETE	103.	4
24.	2	64.	4./	104.	4
25.	4	65.	2	105.	1
26.	2	66.	4	106.	3
27.	4	67.	4	107.	2
28.	2	68.	3	108.	1
29.	4	69.	2	109.	2
30.	1	70.	3	110.	3
31.	4	71.	2	111.	3
32.	3	72.	3	112.	1
33.	3	73.	2	113.	1
34.	1/5	74.	3	114.	1
35.	2	7 5.	4	115.	1
36.	4 *	76.	2	116.	3
37.	1	77.	2	117.	3
38.	2	78.	4	118.	2
39.	2	79.	1	119.	4
40.	DELETE	80.	1	120.	2